Exact and Approximate Testing/Correcting of Algebraic Functions: A Survey
نویسندگان
چکیده
In the late 80’s Blum, Luby, Rubinfeld, Kannan et al. pioneered the theory of self–testing as an alternative way of dealing with the problem of software reliability. Over the last decade this theory played a crucial role in the construction of probabilistically checkable proofs and the derivation of hardness of approximation results. Applications in areas like computer vision, machine learning, and self–correcting programs were also established. In the self–testing problem one is interested in determining (maybe probabilistically) whether a function to which one has oracle access satisfies a given property. We consider the problem of testing algebraic functions and survey over a decade of research in the area. Special emphasis is given to illustrate the scenario where the problem takes place and to the main techniques used in the analysis of tests. A novel aspect of this work is the separation it advocates between the mathematical and algorithmic issues that arise in the theory of self–testing.
منابع مشابه
Study on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملSOLVING NONLINEAR TWO-DIMENSIONAL VOLTERRA INTEGRAL EQUATIONS OF THE FIRST-KIND USING BIVARIATE SHIFTED LEGENDRE FUNCTIONS
In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملBernoulli collocation method with residual correction for solving integral-algebraic equations
The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when ...
متن کامل